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1 Nash Equilibria, Linear Programming, and von Neumann’s
Minimax Theorem

1.1 Nash equilibria

1.1.1 Optimality of Nash equilibria

Definition 1.1. A pair (x∗, y∗) ∈ ∆m × ∆n is a Nash equilibrium for a payoff matrix
A ∈ Rm×n if

max
x∈∆m

x>Ay∗ = (x∗)>Ay∗ = min
y∈∆n

(x∗)>Ay.

Think of these as locally optimal strategies. If Player 1 plays x∗ and Player 2 plays
y∗, neither player has an incentive to change. Given a pair of safety strategies, we can
get a Nash equilibrium, but a Nash equilibrium is a priori not necessarily a pair of safety
strategies. The difference is that we do not require (x∗)>Ay∗ to be the value of the game.
However, these are actually globally optimal strategies, as well.

Theorem 1.1. The pair (x∗, y∗) is a Nash equilibrium iff x∗ and y∗ are optimal.

Proof. ( =⇒ ) This is the same as the proof for the optimality of a saddle point.

min
y∈∆n

max
x∈∆m

x>Ay ≥ max
x∈∆m

min
y∈∆n

x>Ay

≥ min
y∈∆n

(x∗)>Ay

= (x∗)>Ay∗

= max
x∈∆m

x>Ay∗

≥ min
y∈∆n

max
x∈∆m

x>Ay.

(⇐= ) The von Neumann minimax theorem implies that

(x∗)>Ay∗ ≥ min
y

(x∗)>Ay
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= max
x

min
y

x>Ay

= min
y

max
x

x>Ay

= max
x

x>Ay∗

≥ (x∗)>Ay∗.

1.1.2 Indifference and Nash Equilibria

Assume that

(x∗)>A = (a, . . . , a),

a
...
a

 = Ay∗

for some constant a. Then

min
y

(x∗)>Ay = a = (x∗)>Ay∗ = max
x

x>Ay∗,

so (x∗, y∗) is a Nash equilibrium. So x∗ an y∗ are optimal.

1.2 Solving zero-sum games using matrix inversion

Here is a useful theorem that is a consequence of the principle of indifference. You can find
the proof in the Ferguson book.

Theorem 1.2. Suppose the square matrix A is nonsingular and 1>A−11 6= 0. Then the
game with matrix A has value V = (1>A−11)−1 and optimal strategies (x∗)> = V 1>A−1

and y∗ = V A−11, provided both x∗ ≥ 0 and y∗ ≥ 0.

Example 1.1. Let A ∈ R3×3 be

A =

a1,1 0 0
0 a2,2 0
0 0 a3,3


with each ai,i > 0. Using the theorem, we get

V = (1>A−11)−1

=

(1, 1, 1)

1/a1,1 0 0
0 1/a2,2 0
0 0 1/a3,3

1
1
1

−1

=
1

1/a1,1 + 1/a2,2 + 1/a3,3
.
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We also get

(x∗)> = V 1>A−1

= V (1, 1, 1)

a1,1 0 0
0 a2,2 0
0 0 a3,3


=

1

1/a1,1 + 1/a2,2 + 1/a3,3
(1/a1,1, 1/a2,2, 1/a3,3),

y∗ = V A−11

= V

a1,1 0 0
0 a2,2 0
0 0 a3,3

1
1
1


=

1

1/a1,1 + 1/a2,2 + 1/a3,3
(1/a1,1, 1/a2,2, 1/a3,3).

1.3 Linear programming: an aside

Definition 1.2. A linear program is an optimization problem involving the choice of a
real vector to maximize a linear objective subject to linear constraints:

max
x∈Rn

x>b such that d>1 ≤ c1

...

d>k ≤ ck.

Here, b ∈ Rn specifies the linear objective x → b>x, and di ∈ Rn and ci ∈ R specify the
i-th constraint.

The set of values x that satisfy the constraints is a polytope (an intersection of half
spaces). From the perspective of the row player, a two player zero-sum game is an opti-
mization problem of the form

max
x∈Rn

min
i∈{1,...,n}

x>Aei such that x>1 ≤ 0

...

x>k ≤ 0

1>x = 1.

This is not a linear program; the constrants are linear, but hte objective is not. But we can
convert it to a linear program by introducting the slack variable Z = mini∈{1,...,n} x

>Aei.
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There are efficient (polynomial time) algorithms for solving linear programs. The col-
umn player’s linear program is the dual of the row player’s linear program. In fact, for any
concave maximization problem, like the row player’s linear program (we’ll call it the pri-
mal problem), it is possible to define a dual convex minimization problem, like the column
player’s linear program. This dual problem has a value that is at least as large the value
of the primal problem.

In many important cases (such as our linear program), these values are the same.
In optimization, this is called strong duality. This is von Neumann’s minimax theorem.
The principle of indifference is a general property of dual optimization problems (called
complementary duality).

1.4 Proof of von Neumann’s minimax theorem

We want to prove the following theorem:

Theorem 1.3. For any two-person zero-sum game with payoff matrix A ∈ Rm×n,

min
y∈∆n

max
x∈∆m

x>Ay = max
x∈∆m

min
y∈∆n

x>Ay.

The textbook proves this theorem using the separating hyperplane theorem. We will
prove this theorem in a more algorithmic way, developing an optimal strategy by learning
from the other player’s optimal moves against ours.

Consider a two-player zero-sum game that is repeated for T rounds. At teach round,
the row player chooses an xt ∈ ∆m. Then the columns player chooses a yt ∈ ∆n, and the
row player receives a payoff of x>t Ayt.

The row player’s regret after T rounds is how much its total payoff falls short of the
best in retrospect that it could have achieved against the column player’s choices with a
fixed mixed strategy:

RT = max
x∈∆m

T∑
t=1

x>Ayt −
T∑
t=1

x>t Ayt.

We will see that there are learning algorithms that have low regret against any sequence
played by the column player. These learning algorithms don’t need to know anything about
the game in advance; they just need to see, after each round, the column vector of payoffs
corresponding to the column player’s choice.

Lemma 1.1. The existence of a row player with low regret (RT /T → 0 as T →∞) implies
the minimax theorem.

Proof. Define x̄ = T−1
∑T

t=1 xt. Suppose that the column player plays a best response yt
against the row player’s choice xt:

x>t Ayt = min
y∈∆n

x>t Ay.
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Define ȳ = T−1
∑T

t=1 yt. We then have

max
x∈∆m

min
y∈∆n

x>Ay ≥ min
y∈∆n

x̄>Ay

= min
y∈∆n

1

T

T∑
t=1

x>t Ay

≥ 1

T

T∑
t=1

min
y∈∆n

x>t Ay

=
1

T

T∑
t=1

x>t Ayt

= max
x∈∆m

1

T

T∑
t=1

x>Ayt −
RT

T

= max
x∈∆m

x>Aȳ − RT

T

≥ min
y∈∆n

max
x∈∆m

x>Ay − RT

T

→ min
y∈∆n

max
x∈∆m

x>Ay

as T →∞.

The proof shows that x̄ and ȳ are asymptotically optimal, in the sense that the gain of
x̄ and the loss of ȳ approach the value of the game. Next lecture, we’ll consider a specific
low regret learning algorithm: gradient ascent.

5


	Nash Equilibria, Linear Programming, and von Neumann's Minimax Theorem
	Nash equilibria
	Optimality of Nash equilibria
	Indifference and Nash Equilibria

	Solving zero-sum games using matrix inversion
	Linear programming: an aside
	Proof of von Neumann's minimax theorem


